WELCOME!

June 27, 2022

Guest Speaker:
Elizabeth Harrington, MS, CGC
Lecturer, Genetic Counseling-Dept of Neurology
Columbia University Medical Center

Genetic Counseling in ALS: Things to Consider
GENETICS COUNSELING & ALS

ALSA Care Services Webinars
June 27th, 2022

Elizabeth Harrington, MS, CGC
Lecturer in Genetic Counseling,
Department of Neurology

The Eleanor and Lou Gehrig ALS Center
Columbia University Medical Center
Basic genetics

HUMAN BODY → CELL → CHROMOSOMES

FUNCTION → PROTEIN → GENE

DNA (G, A, C, T)
Basic genetics
Basic genetics
Basic genetics: inheritance

Chromosome

Gene
Basic genetics: inheritance
Inheritance & disease risk
Inheritance & disease risk

- **Inheritance**: most ALS-associated genes are autosomal dominant
 - 50% risk to 1st degree family members

- What’s the risk of developing disease symptoms?
 - Varies depending on the specific ALS gene mutation—“variable or reduced penetrance”
 - Not all risk is equal

Parents

Children

50%
Not all risk is equal

Environmental Factors

Baseline Population Risk

Symptomatic ALS

Genetic Factors
Not all risk is equal

Sporadic ALS = singleton ALS
90% of ALS
Environmental factors + small genetic factors

Familial ALS, “genetic ALS”
SOD1 A5V variant
Highly penetrant

Familial ALS, “genetic ALS”
SOD1 I114T variant
Reduced penetrance
Not all risk is equal

- Genetic ALS
 - “variable or reduced penetrance”
 - *Penetrance* is proportion of individuals carrying a particular gene variant that also express associated disease symptoms
 - Not all who have certain variant may go on to develop ALS
How does genetics play a role in ALS?

Chromosome → Gene → Protein → Function

- **C9orf72**
- **SOD1**
- **FUS**
- **TARDBP**
- **TBK1**
- **ALS2**
- **ATXN2**

- **Protein transport**
- **RNA metabolism**
- **Mitochondrial function**
- **Proteostasis**
- **DNA repair**
How does genetics play a role in ALS?

Chromosome → Gene

C9orf72
SOD1
FUS
TARDBP
TBK1
ALS2
ATXN2

Protein Function

Protein transport
RNA metabolism
Mitochondrial function
Proteostasis
DNA repair

Motor neuron degeneration

Healthy motor neuron → Motor neuron degeneration
Is ALS “genetic” or “hereditary”? What is my genetic risk?

- Specific cause is undetermined – likely a combination environmental and multiple genetic factors
- Risk factors:
 - Age, gender, military service, ancestry
 - Strong family history of ALS
Is ALS “genetic” or “hereditary”?

No family history

- Known gene mutation (~5-8%)
- Unidentified

- Typically not monogenetic (not caused by a single gene mutation)

~90%

~10%

Family history of ALS

- Known gene mutation (~66%)
- Unidentified

- More commonly monogenetic (caused by a single gene mutation)
ALS-associated genes

B sporadic MND (n=385)

- TARDBP, 1%
- NEK1, 0.80%
- TBK1, 0.50%
- OPTN, 0.30%
- C9orf72, 8%
- SOD1, 2%

A familial MND (n=42)

- SOD1, 29%
- C9orf72, 33-50%
- No variant, 38%
- TBK1, 2%

No variant, 88%
ALS-associated genes

C9orf72 and SOD1
- Most common genes associated with ALS
- Active clinical drug trials for gene-specific drugs

SOD1

- Over 180 disease causing variants
- **SOD1 A5V** – rapidly progressive and aggressive form of ALS
 - Mean age of onset is 49
 - Survival time of less than 2 years after disease onset
 - Responsible for 50% of SOD1 mutations associated with fALS in North America
- **SOD1 I114T** – extreme phenotypic variability
 - Penetrance is ~50% at age 60 and 88% at age 80
 - More slowly progressive disease

C9orf72

- Identified in 2011
- GGGGCCC hexanucleotide repeat expansion
- “Out of Finland” theory – most common in those of Scandinavian ancestry
- Variable penetrance
 - ~50% by age 58
 - Risk of developing disease increases with age
- Most common genetic cause of ALS and frontotemporal dementia (FTD)
Should I get tested?
How can genetic information be helpful?

1. Information for family members
 • Autosomal dominant inheritance and variable penetrance
 • Provide knowledge of risk for family
 • Presymptomatic clinical drug trials
 • Considerations for future and family planning options
 • Financial planning
 • In vitro fertilization and preimplantation genetic testing options
2. Gene-targeted clinical drug trials

- **C9orf72**
 - A Phase 2a Study of TPN-101 in Patients With C9ORF72 ALS/FTD
 - Safety and Therapeutic Potential of the FDA-approved Drug Metformin for C9orf72 ALS/FTD
 - Study of WVE-004 in Patients With C9orf72-associated Amyotrophic Lateral Sclerosis (ALS) or Frontotemporal Dementia (FTD) (FOCUS-C9)
 - Study of Safety, Tolerability, and Biological Activity of LAM-002A in C9ORF72-Associated Amyotrophic Lateral Sclerosis

- **FUS**
 - A Study to Evaluate the Efficacy, Safety, Pharmacokinetics and Pharmacodynamics of ION363 in Amyotrophic Lateral Sclerosis Participants With Fused in Sarcoma Mutations (FUS-ALS)

- **SOD1**
 - Expanded Access Program for Tofersen in Participants With Superoxide Dismutase 1-Amyotrophic Lateral Sclerosis
 - A Study of BIB067 When Initiated in Clinically Presymptomatic Adults With a Confirmed Superoxide Dismutase 1 Mutation (ATLAS)
Should I get tested?

- May help determine the underlying cause of disease
- May inform you about potential clinical trial opportunities
- Provide knowledge of risk for family
- Considerations for future and family planning options
- Results may not change care plan
- Clinical trial options also carry a risk
- Anxiety surrounding genetic diagnosis and risk to family members
- Potential cost of testing
 - Now minimal to none
- Potential insurability risks
 - GINA.org
How would I get tested and what’s involved?

• Speak with your neurologist/ALS specialist/genetic counselor

• Signed informed consent by you and neurologist

• Blood draw or saliva collection – test sent to commercial, CLIA approved genetic testing laboratory

• Results returned in 4-6 weeks
Genetic test results

• Negative result – “normal”
 • No variants identified within known and tested genes

• Positive result – “abnormal”
 • Disease causing variant identified in ALS-related gene
 • Confirms diagnosis

• “Variant of uncertain significance” (VUS)
 • Genetic variant identified through testing but whose significance to the gene function is not certain
 • Not enough scientific evidence to determine if the VUS is related to disease or normal variation in the genetic code
Genetics & ALS Takeaways

• Single genetic causes for ALS are most commonly identified in individuals with a strong family history of ALS

• Actual disease risk for families with a known gene mutation depends on the specific ALS-associated gene

• Genetic testing is increasingly performed given emerging drugs in clinical trials

• Genetic testing is optional, and all potential benefits and risks should be considered prior to pursuing testing